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Monte Carlo Simulations [1], equivalent medium approaches [2, 3], and methods based on

Boltzmann transport theory [4, 5] have been applied to study the scattering of light produced by

lightning in a thundercloud. The Monte Carlo approach is the most straightforward but other

approaches may yield better insight into the phenomena.

The cloud is assumed to consist of a uniform, homogeneous, random distribution of spherical

water drops with an average radius of 10 _tm and number density p = 100 cm -3. In particular,

light in the near infrared, _. = 0.7774 _tm, is of interest. The equivalent medium approach, based

on methods due to Twersky [6, 7], yields the coherently scattered fields. For the ratio of the

average separation distance between water drops to the wavelength, the scattering is considered

to be almost totally incoherent [8]. During the time interval of a typical lightning event, the

movement of the water drops is negligible. For fixed configurations of scatterers, the distinction

between coherent and incoherent scattering is not very clear in the literature. The best explanation

in the author's estimation is given by Foldy [9], who admits that for a fixed configuration of

scatterers, all of the scattering is strictly coherent. A rather artificial distinction is made. The

following definition is unambiguous: the square magnitude of an average field I< >1=,v = or n,
is proportional to the coherent intensity; V = <lwl=) - I< )1 is proportional to the incoherent

intensity. The function V is approximately given in terms of the square magnitude of the radiated

field from a scatterer at b, averaged over all possible configurations of the remaining scatterers,

p_ dr, <[U,[ 2 )s _ P_ drs [(Us )[2, (1)

where dr, is a volume element in local coordinates r = r-b,.

The problem of electromagnetic scattering of an incident plane wave by an arbitrary

configuration of obstacles was solved by Twersky [10]. In this report, the results are extended to

point source incidence corresponding to a Hertz dipole. Knowledge of the response of a fixed

configuration of scatterers excited by a point source may provide insight to improve the accuracy

of the values of bulk parameters for clouds which have been found using plane wave excitation.

As in [3], we transform to the frequency domain; time domain solutions are recovered by a

Fourier integral. A dyadic formalism is used throughout. We will employ the following notation:

d_,u, and _ will denote the incident, scattered, and total fields respectively. Lower case letters will

correspond to single scattering (an object in isolation); upper case letters will be used for multiply

scattered fields. Functional dependencies in brackets imply plane wave incidence; the use of

parentheses is reserved for fields corresponding to a point source. Modification from plane wave

to point source excitation is accomplished by operating on the plane wave results with a

Sommerfeld-type contour integral representation [11 ] of a spherical Hankel function.

Generally speaking, if a transverse wave has a direction _, its dyadic form will look like

- fg, where I is the identity dyad. Incident fields will have the form

VV ,
_[r,l¢l=(I-lef_)q_[r,l_ _ d_[r,l_l=e'_'r, _(r,r')=[I +--_-]d_(r,r), _(r,r,)=h_')(/_r-r'_, (2)

where the first argument refers to the point of observation and the second is the direction of

incidence or the source location. The plane wave can be taken as the incident electric or magnetic
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field. The function $(r,r') specifies the fields due a dipole located at r'. For an electric or

magnetic dipole with directions fi,fim, we have [3]

/k 3 7t ,_ k 3
E'= _(I)l,r, r )-_, H'- 4r_Bo_o V_l)(r- r'_ x _,

ik3 _(r, r 9 • tim,E;- 4n0_eok3 Vh_'XIr-r'_×P"'S;=

(3)

where e0 and _t0 are the permittivity and permeability of the medium external to the scatterers.

Here, E i and H _are the electric and magnetic field vectors due to an electric dipole; the subscripts

m denote the corresponding quantities due to a magnetic dipole. We will solve for electric fields

when given an electric dipole for the source and work with magnetic fields for a magnetic dipole.

The remaining fields may be found using Maxwell's eqs.

A dyadic version of the Helmholtz surface integral representation is given by [10]

_= -_/;dS(r){[fi x _(r,r)]r- [V x _]- IV x _(r,r)] r .[fi× _]}= {_(r,r), _}, (4)

where V operates on the variables associated with the vector r to a point on the surface of

integration, T denotes the transpose, and fi is the outward normal. In (4), _ = _ [r, 1_] or _(r, r')

and i can be if[r, !_] or if(r, r') depending on the initial excitation.

As r - 0% we can write

in (4) to obtain

_(r, r) _ (I" - f_)/_)(kr)e -a*" (5)

Single scattering amplitudes for both kinds of excitations may be

Sommerfeld's integral representation for h (]) is given by
• P0

l'I +--_-)h_°(kir-rl) = _ j"df_(fc) (i - ]rel_c)e/kfe'(r-r),

defined in this

(6)

way.

(7)

where _c = _c(0_,q),), 0_<q), _<2_, and 0, starts at zero and goes to 0, -ioo, where 0, is in an

interval which guarantees the convergence of the integral. Substituting in (4), reversing the order

of integrations, and recognizing _ from (6), yields the spectral representations

u[r'f_]= l---;df2(r_)d_crg[r_'f_]'2n j _(r,r')=-_;df2(_)d_'_g(_,r'). (8)

These representations are valid for r greater than the scatterer's projection on _.

Eq. (7) shows that a point source can be written as a superposition of plane waves. If the

response of an object for plane wave excitation is known, its response to a point source can be

obtained by superposition. Allowing the direction of incidence of a plane wave 1_ to be complex

and regarding exp[-ik, r'] in (7) as a phase factor, we find the relation
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An integraloperatorlike (9) will beusedto modifyplanewaveformsto point sourceexcitation.

For sphericalscatterers,explicit formsfor the scatteringamplitudesmaybewritten in terms
of Hansen'sfunctions.Theexcitationsmaybewritten as

_[r,l_] = 2/'_Q.'(M_(k,r)C_m.(l_)-/N_(k, r)B_,..(l_)],

t -- m 3 1 t + 3 1 _ t.d_(r,r)-_]Q_,[Mm.(k,r)M_..(k,r ) N,..(k,r)N_m.(k,r )],r>r, (10)

Z--- e:--(2.+
.=l _=-. n(n + 1) '

where C and B are vector spherical harmonics. We use the definitions of these functions as given

in [12] except that complex exponentials are used instead of even (cosine) and odd (sine) forms.

The normalization of the spherical harmonics Y._ used here follows [11]. When r <r', the

corresponding vectors in the second eq. in (10) are interchanged.

The interior and radiated fields have the forms

' | m ^ 1 ra ^
Mm.(K,r)a. k +Nm.(K,r)b. k ,[1 [1}
bls_.(K,r)e_ 1_ + N_.(K,r)d_ 1_ ,u[r'l_] :_-_ ' [] []}. (11)

r9=Z
' 3 m t 3 m t

_'(r, r )= _-_: M,..(K, r)e. (r)+ N,..(K,r)d.(r )},

where k=k(eo,_to)and K= K(e,t_) is the interior wave number. In general, the transition

conditions at an interface, where the normal is denoted by fi, require that

where U =/.to/p if _ represents an electric field and ¢o/s if _ is taken to be a magnetic field.

For a sphere of radius a, the scattering coefficients are given by

b_, [ft] = i'-'._ + l)Q_'B ,,,( f_)b,,

dr [l_] =/"-' x/_ + 1)Q_'B_,.. (l_)d..

a_(r ') = Q._Ml_m.(k,r')a.,

b_(r') = Q._Nl_m.(k,r')b.,

e_'(r')=O_M'_..(k,r')c.,

d_.(r')=Q_N'_..(k,r')d.,

(13)

where the constants a., b., c., and d. are the appropriate set of Mie coefficients found in [3].

Series for the scattering amplitudes may be obtained by substituting large kr forms for the

Hansen's functions in (11),

_(_, r') = Z _ 1)i-"Q"_[c.Cm.(r)Ml-m"(k'r') + id.Bm.(r)Nl-..(k,r')] ,
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and may be used for the electric or magnetic fields given the same was chosen as the incidence

after multiplication by appropriate constants. The remaining fields may be found by first

interchanging those M's and N's in _ or C's and B's in R which are functions of _. Solutions

and _ for magnetic fields when _ is taken to be an electric field are then obtained by

multiplication by T = -i_o/Ix0 ; use 1/T for the remaining situation.

Consider a fixed configuration of N scatterers. Each has its "center" located at

b,, s = 1, 2,..., N. The total field for plane wave excitation may be written as

$

where U, is the scattered field from the scatterer at b, as if it was located at the origin. Forms

similar to those obtained for an isolated scatterer,

U,[r,,l_]= 2_fdO(_c)e_Ja,'.',Gs[_c,f_]-h_l)(/cr,)(_,[0,1_ G,[_,I_]= {(i--f_)e-it_,,f__,[r,l_]}, (16)

where _, - _ as r - oo, are also valid here. Taking phase differences into account, we have

G[_,I_] = )-_e _( ) G,[r,k] (17)
$ - _

Twersky [10] obtained a coupled set of integral eqs. for G,[f,l_] in terms _,

G,[P,I_] = ff,[f,f_]+_-_t_fdD(fc)eik(_o-f_)'b'_._[f,f,].Gt[p¢,f_ _ b,t = b,-b,. (18)

Recall that O, is related to U, , which is written in local coordinates r,. Operating on (18) with

b.)]

(3,(_,b') : _,(_,b')+lt_fd_fc)ei_,'b,,_,[_,f_].Gt(_,bO, b" = r'- b,. (19)

When the particle separations are large compared to wavelength, the integral in (19) may be

evaluated asymptotically. A convenient method [ 10] to do this exists whenever the kernel, aside

from the exponential, can be expanded in a series of vector spherical harmonics. Iterating while

retaining an appropriate number of terms in the asymptotic series will generate a consistent

asymptotic expansion for G,. Exactly the same expansion as given in [10] will work for (19)

except that G[] is replaced by G(). Retaining only the leading term in the integral, gives

(_(f, b')_ g,(f, b')+ _ _')(kb, t)g,[f,f_a].Gt(f_a,b'_).
t¢:$

(20)

A set of algebraic eqs. may be obtained by substituting (14) and

b.)=E[c, (0CZo(b').
into (19) and using orthogonality. Similar to [10], we obtain

(21)
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•-n s m I t ms qp t qp t
C'_ = xf_n +I ), c_,_M__.(k,b.)+n(n+ 1)ec EE[e_%(b )Co t

t_s q,p

"-n s m l t m s Fop t st t •D_t_,: ,f_+ 1)t d,'Q3 N_,,,(k,b,) + n(n+ 1)O a. Ey" [- +
t_, q.p (22)

E_.(b,t) = -_ f df_(Fo)e'_°'b" C_..(fo)" Cqp(f_)= _ j"df_(F_)e '_'b'B_..(f_) •Bqp(f_),

F3_.(b.t) = _ f df2(O_)e'e"b" C_,..(O_)• B,u(O_) = ---_ f dD.(_le _''b" B_,,,,,(O_)-Ce(O_),

where the scalars Eand Fcan be evaluated in terms of special functions.

In a cubic cloud 10 km on a side, there are approximately 1020 drops. For such large systems,

a simple approach as suggested in (20) may be appropriate. Sufficiently far from the source, each

drop in a small sub-volume of the cloud experiences essentially the same initial excitation. All of

the drops in this sub-volume can be considered as a "compound" scatterer. Its scattering

amplitude may be determined by (17). It will then be possible to consider fewer particles making

up the cloud. Presumably, the procedure of obtaining G from G, considering G as a

"compound" G, and working with a distribution of "compound" scatterers can be repeated to

obtain a result which is amenable to numerical computations.

The author would like to express his appreciation to W. Koshak, R. Blakeslee, H. Christian,
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Novy and T. Shurtz.
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